
AO—A0S6 901 MITRE CORP BEDFOØD MASS P76 9/2
MULTICS SECURITY KERNEL VALIDATION: PROOF DESCRIPTION. VOLUME I——ETC(U)
.JUL. 78 S R AMES • D K KALLMAN ~

F19628—77—C—00 0I
UNCLASSIFIED MTR—33814—V0L 1 ESD—TR—78—1*8—V0L—1 NL

~in. _ _ _

END

______________________________ FILMED

S

H

ESD-TR-78-148 MTR -3384, Vol. 1

~~~ MULTICS SECURITY KERNE L VALIDATION:

PROOF DESCRIPTION

VOLUME I

BY S.R. AMES AND D.K. KALLMAN

- S

JULY 1978

Prepared for

• DEPUTY FOR TECHNICAL OPERATIONS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNIT ED STATES AIR FORCE ~~/ ‘~,
“

Hanscom Air Force Base, Massachusetts

(I

,

Project No. 522N
Prepared by

THE MITRE CORPORATION
Approvud for public r.l.. ; Bedford , Maasachuaetta
du,tribution un limit d. ] Contract No. F19628’-77-C—0001

7
8 

07 27 03 2



T ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~

-

I

When U.S. Government drawings, specifications.
or other data are used for any purpose other

than a definitely related government procurement
operation, th . government thereby incurs no
responsibility nor any obligation whatsoever; and
th. fact that the gpvernment may have formu-
lated , furnished, or in any way supplied the said
drawings, specifications, or other data is not to be
regarded by implication or otherwise, as in any
manner licensing the holder or any other person
or corporation, or conveying any rights or per-
mission to manufacture, use, or sell any patented
invention that may in any way be related ther eto .

Do not return this copy. Retain or destroy.

REVIE W AND APPROVA L

This technical report has been reviewed and Is approved for publication.

WILLIAM R. PIECE, Captain, USAF C 3. GRE WE, Jr ., ~~(Col, USAF
Technology Applications th.vieion Chief , Technology Appli tiona Ilvision

FOR THE C(1IMANDER

Q~~~~~~~~~~~~~~~COlLAF
4 Dtreotor , Computer Systems Wa~g1neering

~~puty for Technica l Operations



- 1

UNCLASSIFIED .

~~ ~~

St RITY ~~1’~ IFICATI ON OF THIS PAGE (If~i.n Data £nt.,.d)

~~~~~~~~~~~~~~~~~~~~~~~~~~~ PAGE BEFORE COMPLETING PORN
c. RtP~~R MBEP 2, GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER

I
ESDITR-78’-148- V vL~

-

.~2 ~~~~~~
j~~~~~_ .__..L_- ~~~~~~~~~~~~~~~ .. 3. TYPE OF REPORT & PERIOO COVERED

y
~ rMULTICS SECURITY JICERNE L VA LIDA TION :

~PROO F DE~CRIPTIO~i. ______- ‘i P~ RP~ R~ lP1 GORG REPVWT ~ tJMflN
LUM~ I ~~~~~~~~~ ~-.-—-- ~-- — I MTR -3384 ~~~~ — V ~fi-

~~. AUTHOR(s) ~~ cONTRACT O~~~~~~ANT huMltal’J,

~~~~~ S.R./Ames 

________________________________ L!~~::~~~.4
9. pERFORMING ORGANIZ AT ION NAME AND ADDRESS 10. PROGRAM ELEMEN1~ PROJECT , TASK

AREA & WORK UNIT NUM•ENS

The MITRE Corporation
P.O. Box 208 / Project No. 522N
Bedford. MA 01730 ___________________________

II . CONTROLLING OFFICE NAME AND ADDRESS . 12 ~~~GBL,D,AZE

Deputy for Technical Operations -
~~
-- .. L 7 8 ~ —

Electronic Systems Division , A FSC “ GF4AG~ &~,,~~~
Hanscom Air Force Base , MA 01731 0 ‘ j  ‘j

T4~ MONITORING AGENCY NAME & AO DRESS(it dif(. r.nt from Control l ing Office) IS. SECURITY CLASS. ~flhS. r.port)

UN CLA SSIFIED
IS.. DECL ASS I FICA T ION/ DOWNGRADING

SCHEDUL E

1~~. DISTRIBUTION STATEMENT (of Ski. R.pori)

Approved for public release ; distribution unlimited.

Il. OISTRIBUT ION STATEMENT (of Sb. .b.?,act .nS.r.d In Block 20, II dIU.r.nt from R.poi’t)

IS- SUP PL EMENTA RY NOTES

II. KEY WORDS (Conllnu. on reverSe aid. If n.c....ry end Identify by block numb. ,)

MU LTICS
SECURITY KERNELS
VERIFICATIO N

20. ABST RACT (Contlnu. on ravin , aid. II n.c.ai•ry and ld.nhIVy by block numb er)

major step In the design of a system intended to support mult i level operation is the
demonstration that the design Is secure. One methodology for demonstrating security
is to define (model) a security policy and mathematically verify that the design adheres
to that policy. The first step in the design process , after the model , is a rigorous
but abstract specification of the system. This paper was written to demonstrate the —

(over)

DD 
~~~~~~~ ~473 EDITION OF I NOV 89 1$ OBSOLETE UNC LASSIFIED

—~~~ ~~~~~~~~~~~~~ � ~~~~ 78 () ‘7 srZtlV
~~
JtLAssI U34 C2HIS PAGE (Ifli mi D.t. EnI.71n

— — .--,-.,--~~
- — — — .~~~~~~~ - - _1-

~
-,_


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—

- - ~~~~~~~~~ 
- - .

UNC LASSIFIE D
SECURITY CLASSIFICATION OF THIS PAGE(Whw DaSa Bnle r.d)

20. Abstract (continued)
- 

~security of the top level specification for Multics security kernel. Security is
- 

- demonstrated by a rigorous proof that the abstract specifications correspond to
the model.

UNCLASSIFIE D
SECURITY CLASSIFICATION OF THIS PAOE(1~~Ien 0. ,. Ent.n.d) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - —~~ -- - - -  -~~ -~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~ - --.~~~~~~~~



‘~~~~‘~‘~T~~~~~~~~~ 
-.—

~~~~~~~~
-
~
-—.. - “

,,, , ~~~~~~~~~~ ~~—~
--

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~ _ ._,,. ...,.n- ,~,’ -’~—’- -14U----~-.—_.. ’~~-*” ~~~~~~~~~~~~~ 
,,_ -~~~~~ v—...—~~ ——--- - - ~~~~~~

i~ ;‘~i

A CKNOWLE DGMENT

This report has been prepared by The MITRE Corporation under

Project No. 522N. The contract is sponsored by the Electronic Systems

DivIsIon , Air Force Systems Command , Hanscom Air Force Base ,

Massachusetts.

- ~~~~ ~ - - - -~ --
— - 

~~
‘ *~ ~~~~~ ~~

~ 
N . ~ ~ So’~ on o~Uo~

, 0
y_-s ’~ ‘~~ 

1

L  -



— —- - — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~ ---~~~~~~~~~~ -~ ‘-- ~~~~~~~~~~~~

-- - 

~~~~~~~~~~~~~ ~~~~~~~~
_

~~ --,w- -

.. - —
- - . ~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~

PREFACE

This is Volume I of a two volume report that proves that a top—
level specification for a Multics security kernel is secure. In this
volume an introduction to the proof methodology is given . Volume II
contains the actual proof.

All references to sections refer to Volume ‘I. All references to
appendices refer to Volume U.

2

L - -  -



TABLE OF CONTENTS

LIST OF ILLUSTRATIONS S

- 
* 

LIST OF TABLES

SECTION I INTRODUCTION 6

BACKG ROUND 6

Model 7
Speo if ioat ion 8
Implementation Validation S

FACTORS 9
SCOPE 10

SECTION II DESCRI PTION OF TH E PROO F 11

SIMPLE SECURITY CONDITION 11
THE •-PROPERTY 12

Ident ity  Objects and Assign Security Levels 14
Identify the Subjects 15
Iden t i fy  Accesses 16
Generate the Reference and Case Tables 17
Lemma Generat ion 17
Prove the Lemmas 19

ACTIVITY , TRAN QUILITY , AND ERASURE 19
TRUSTED SUBJECTS 20

- , SECTION II I A COMPARISON OF THREE TOP LEVEL VALIDATION EFFORTS 22

CAV EATS 22
11/ 1~5 VALID A T ION 22
FIRST ATTEMPT AT MU LTICS STORAGE CONTROL

VERI FICA TION 23
MULTICS TOP LEVEL VALIDATION 24

Syntax Changes 24
Functional Behavior Changes 24
Cha nges for Val idation 25
Errors Found by Validation 25
Cost of the Validation 27

3 

- - - .. —- ——-- .-~~ - --



~~-i~
--- $~~~ ~~~~~~~

‘—‘--- .
~~

.-.. ..-,‘ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.
,.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
----

~~
-
~~~~ ——~~~~~~~~~~~

— -- - — .—.-—.———-——— .—.--.—*-—.-- , ~~~~~~~~~~~~~~~~~~
~~~~ Wi” .’~

TABLE OP CONTENTS ( Concluded )

SECTION IV REMAINING PROBLEMS 28

ThE IMPLEMENTATION V—FUNCTION—NACROS 28
THE CLOCE 29
PROCESS SCHEDULING 29
DISCRETIONARY ACCESS CONTROL 29
PROOF ERRORS 30

SECTION V CONCLUSION 32

REFERENCES 33

4 

~~~~~- - - -~~~~~-~- 
_

. _ _

—--- -

~~~~ - -—-~~-- ----.- ~—.---~~--~~~~~~ 
—- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~

N -

LIST OF ILLUSTRATI ONS

Fi&ure Number

1 The Labelled Specification of Release_device 13

LIST OF TABLES

Table Number

I Security Level Assignment Table 14
II Reference Table for Release_device 18
III Case Table for Release_device 18
IV Lemmas For Release_device 18
V 11/115 Top Level Validation 23
VI Multics Storage Control Validation 23
VII Specification Changes 25
VIII Design Errors Found by Validation 26
IX Multics Top Level Specification Validation 27

5

_ _ ~~~ —~~~- - -~~-.—

SECTION I

INTRODUCTION

A nu jor step in the technical certification of a system intended
to support multilevel operation is the demonstration that the design
is secure . One methodology for demonstrating security is to define
(model) a security policy and mathematically validate that the design
adheres to that pol icy.

For the past several years, MITRE has addressed the problem of
secure multilevel computer operation . The outgrowth of these efforts
is a computer security design methodology based on a formal, mathemat-
ical definition of a security policy. The first step in construction
of an operational system is the specification of an abstract design.
The next step is a validation that the design is secure. We demon-
strate herein the security of the Multica design specifications, de—
acribed in a companion paper (1], by formally checking whether the de—
sign specifications satisfy the conditions of the model . This corn—
plete mathematical proof is a key step in the design methodology for
secure systems. Without validation , there is no guarantee of securi—
ty.

A summary of the val idat ion methodology is presented in Section
II of this report . Section III compares several top level validation
exercises that MITRE has performed . Section IV addresses open issues
in the proof methodology . The actual proof is contained in the appen-
dices in Volume II. The remainder of Section I is devoted to back-
ground on the mathematical model and specification language.

BACKGROUND

In response to the need to process multiple levels of classified
data in computer systems, the Air Force Electronic Systems Division
sponsored efforts to develop an operating system that satisfies the
DoD security requirements (2] in a technically verifiable way. The
first of these efforts was a panel composed of recognized experts from
industry, universities, and government organizations [3]. The panel
recommended the use of a reference monitor — an abstract mechanism
that controls the flow of information within a computer system . To be
the basis for a multilevel secure computer system , this mechanism must
meet three requirements:

6

rr ~~‘‘~
‘
~~~ 

- - 
— - ‘

Comoleteneas —— the mechanism must mediate every access by a sub-.
ject (active system element ) to an object (information contain-
er).

Isolation —— the mechanism and its data bases must be protected
from unauthorized modi f i ca t ion .

Ver i f iabili ty  —- the mechanism must  be small , simple , and under-
stan dab le so that  It can be verif ied to correctly perform its
funct ions , i . e., , be consiate~ t wi th  the DoD security policy .

The ~~rdware—software implementat ion of’ a reference monitor is called
a security kernel.

A kernel satisfies requirement (1) by creating an environment
within which all non—kernel software is constrained to operate , and by
mainta ining control over this environment . The kernel can be thought
of as creating an abstract machine or virtual environment on a per
process basis. This machine performs Instructions from the base hard-
ware (i.e., the hardware on which the kernel software runs) and in—
yokes functions implemented by kernel software. The accesses allowed
a user are only those permitted by the hardware—kernel pair.

The requirement for protection against unauthorized modification
is satisfied by isolating the security kernel software in one or more
protection domains. As a” example , a ring mechanism [ 14]  can be used
to provide a domain protected from unauthorized modification .

The requirement that  t he kernel ver ifla b ly perform its funct ion
s t imula ted  the development  of’ a formal methodology to demonstrate its
correctness . A su i tab le  methodology was introduced by Bell and Burke
[5] .  It Includes :

1. a formal description of the DoD security policy in terms of’ a
mathemat ica l  model ;

2. a complete description ( specif icat ion ) of the kernel behav ior
that is proved consistent with the model; and

3. a proof that the kernel Is correctly Implemented with respect
to the descr ipt ion of its behav ior used In the second step.

Model

The mathematical model [6) [7] establishes an “inductive nature”
of security by demonstrating that security is preserved from one state
t-o another . The security policy is defined by a set of axioms that

7 V

_ _ _ _ _ _ _ _ _ _ _  --



~ 

limit the allowable access . These axioms were defined to prohibit a
• program operating on behalf of’ a user from obtaining data that the

user is not ent i t led to see and from reducing the classification of
any information . The enforcement of these axioms by the kernel means
that user code need not be validated .

S~ec ifIcat ion

A proof that the kernel behavior is consistent with the model ne-
cessitates a description of that behavior . We describe kernel behav-
ior with a non—procedural specification [8] that we call a “top level
specification .” The top level specification verified herein is a for—
mal description of an abstract machine intended to implement the ref—
erence monitor for the Multics system [9].

The specification language is derived from a technique developed
by Parnas [8] and extended by Price [10]. A “Transition specifica-
tion” is a method of describing an abstract machine. The state of the
machine is embodied in a set of primitive “value” functions (V—func-
t ions) ,  so called because when invoke d , they yield the last value as—
signed to them . The set of possible mach ine transit ions are def ined
by a set of “opera te” functions (0—functions), so called because they
define the operations that can be performed on V—functions. To speci-
fy indivisible operations, a third set of functions (OV—functions) are
defined that both effect an operation and return a value.

The specif icat ion techn ique allows the use of var ious
simplificat ions: 0—function—macros , V—function—macros , global abbre—
viat ions , and local abbreviations . The impact of these are discussed
in the Factors section .

• Imolementation Validation

Once the kernel’s behavior is shown to be consistent with the
model it is necessary to show that the kernel is correctly implemented
with respect to that behav ior.

An extensive methodology for showing behavioral identity between
a high level user interface specification and a software level speci-
fication has been developed by SRI [11]. The pragmatic side of this
methodology is the use of a hierarchical approach to design the soft—
ware in such a way t hat the proofs required will be divided nat urally
into simple steps. The mathematical formalism for the proofs is re-
lated to work by Mim er [12], and by Hoare [13]. We shall not attempt
to cover this subject furt her here.

The validation that the primitives in the code level specifica-
tion and the corresponding code subroutines are behaviorally identical

8

- ~~~~~~~~~~~~~~~~~~ • 
- -



—___ --—- _ -• ---_ -- --— — - -  ~~~~~~~~~~ 
—-— • ‘----‘———--

~ 
-•-—

~~
.- - - - ----•-• -—•,--—-

~
--—

~---_—. . --- - --
~~

•
~

- - .-•--
~
.-—•‘--,-—..,•“ -

~~~~~
-- - — - - — ---- -- —

• - • .- .- - .

would be an application of the generally accepted methodology intro-
duced by Floyd [114]. The code level specification for a function plus
the code relations provide the input and output assertions required by
the Floyd technique . Whereas a top level specification to model proof
can be done by hand there are serious questions about the credibility
of a manually produced proof of the code with respect to the code 1ev—
el specificat ion , due to the magnitude of the problem. Automatic
program verification tools will most likely need to be employed at
this level to produce a credible proof.

FACTORS

The validation methodology that we are using for Multics was
first applied by Millen to the specification of a prototype kernel op-
erating on a PDP_11/115 [15]. This initial validation exercise in—
volved a small and simple kernel . The Mult ics kernel is much larger
and more complex . To ease the difficulty in both reading and writing
such a large an d complex specif icat ion , the specifiers extended the
specification language to allow for a more concise and compact speci-
fication. The basic extensions are the use of strong typing , 0—func-
t ions macros , and global abbreviations. The specification language
was made into a strongly typed language to make impl icit many of the
argument validation checks. This addition simplifies both the sped —
fication and the validation .1

0—functions macros and global abbreviations support global macro
expansion facilities. The use of the macro facilities greatly reduces
the complexity that is local to a particular function , thus making
that funct ion more readable. However , the validation methodology re-
quires that tables be constructed , for each function, that describe
all objects that are read and/or written . To construct these tables,
these macros , as well as any abbreviations, must be expanded .2 Thus ,
although the new specification technique increases readability , it
also requires that the val idators spend more t ime doing bookkeeping
functions on the specification .

1 The der ivat ion of our spec ificat ion language was influenced by early
versions of the SPECIAL specification language [16]. SPECIAL has
since been expanded to include automated aids not found in our lan—
guage .

2V—function—macros are not expanded . They are handled in a special
way described in Appendix III.

9

~~~~~:~~~~~~~~~~~~

_ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~--



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 
- --—- -

~~~~~~
.--— --—--_- ----- ----- - -- - -

~

To ease the bookkeeping burden we employed automated tools
to construct the validation tables. The impact of the use of the
tools is discussed in Sections III and IV .

SCOPE

This validation covers only the proof that the top level t4ultics
specification obeys tne non—discretionary security properties imposed
by the mathematical model of security. Discretionary access controls
(need—to—know), guaranteed services and priority treatment , properties
that must be addressed in an operational environment , were not ad-
dressed by this val idation . Lower level proofs were also not ad—
dressed because lower level specifications or code do not yet exist
for the Multics kernel.

10

_ _

_ _ _ _ _

_ _

- -

SECTION II

DESCRIPTION OF THE PROOF

In this section we describe how the top level specificatIon is
validated . As described in the introduction , the val idation of non—
discretionary security requires proving that certain axioms are pre-
served by each 0-function in the specification . These axioms are:

1. the simple security condition ;

2. the ‘—property; and

3. the activity, tranqu il it y , and erasure principles .

Below, we will discuss the proof of each of these axioms. First
each ax iom will be expressed in terms of’ the abstract model entities
(subjects , objects). Ne x t , we will give a concrete interpretat ion of’
the axiom in terms of the specification entities (0— functions , V-func-
t ions , and OV-functions). Finally, we show how the concrete interpre-
tation is proven . Our initial discussion wil]. be for untrusted sub-
jects only.3 Following this initial discussion , we will describe the
treatment of trusted subjects.

SIMPLE SECURITY CONDITION

The simple security condition is the direct analog of the DoD re—
quirement that individuals may not be given information that they are
not cleared to read . The simple security condition states that “sub-
jects” (active system entities) may only observe less than or equally
classified “objects” (information repositories).

When an individual is given a clearance he is charged with the
responsibility for maintaining the level of classified information .
However , tools that a computer utility may provide cannot necessarily
be given the same trust. This is due to: the amount of Information
that may be compromised ; the speed with which the compromise may oc-
cur ; and the difficulty in detecting or apprehending the violating
program .

3A subject is considered trusted if it has been given the ability to
violate one of the axioms of the Model .

11

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -..-~~~~~~~~~~.~~
__ ‘_ _n ~ - -- - - — - - - • - - -



In order to ensure that a program operating on behalf of a user
does not have the capability to reduce the classification of any in-
formation , we control the modification of all information .

The ‘—property, tranqu il ity pr inc iple , and erasure principle of
the model (discussed in subsequent sections) are the axioms of the
model that control modification .

The proof of the modification axioms of the model forms a auff I—
d ent condition for proving the simple security condition . This is
beca use information can only be obtained on a computer system by ob-
servIng one object while modifying a second object. Therefore , the
simple security condition need only be independently proven for sub-
jects that have been given the ability to violate one of the models
modification axioms.

THE ‘—PROPERTY

The ‘—property axiom of the model restricts possible access by
stipulating that a subject may only modify an object if that object’s
security level~ is greater than or equal to the subject’s security
level. The ‘—property was designed to prohibit a program operating on
behalf of a user from reducing the classification of any information.

To simplify the validation process , we use an equivalent vers ion
of the ‘—property that states that : If a subject has read access to
an object , 01 , and write access to another object , 02, then the secu-
rity level of 01 is less than or equal to the security level of 02.

To prove the ‘—property, we must decide what the objects and sub-
jects are in the computer system, what the security levels of all the
objects are, and what the read and write accesses in every function
are. For each subject, we must list all Its read and write accesses
and prove that the security levels of all the read accesses are less
than or equal to the security level of all the write accesses. The
steps involved in the ‘—property proof are:

1. Identify and assign security levels to all objects.

2. Identify the subjects.

14We defi ne a security level to be an element of a lattice formed by a
clearance/classification component and a compartmented ( formal need—
to—know ) component.

12 

-~~~~~~~~~ - ~~~~~~~~~~~ - --- - • ~~~-



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-~~~~~~ —~~~~~

— ~~~~~~~~~~~ ~~~~~~~~~ - - ~~~~~~~~~~~~~~~~ - — — -- -~~~q.•~— -y .- -

3. List all the accesses by each subject.

1$. For eaoh subject, write down the inequalities needed to prove
the ‘—property. We oall these the lemmas.

5. Prove that the lemmas are preserved by all 0— functions.

Below , we present a brief explanation of these steps. Since much
of the work involved in the ‘—property proof is strictly mechanical
and has been automated , we will comment on the degree of’ automat ion
used for each step. A further exposition of the techniques is pre-
sented in (15].

As a means of illustrating the proof teohnique , we have chosen to
use the 0— function Release_devioe (see Figure 1) from the Multios
specification as an example.

0_function Release_devioe(devioe_id)

A exception

B 3eoure_read(Cur.aocess_level , Devioe(devioe_id) .acoees_level);

C *Device(devioe_id).owner : Cur_prooess;

D effect

B Devioe(devioe_ id) .owner = “undefined” ;

Figure 1. The Labelled Specification of Release_device

The effect of this function is to return ownership rights of a
particular device to the system. In order to be successfully invoked
two conditions must be met . First the device must have a security
level less than or equal to the security level of the process making
the oall (this allows the process to read the current ownership of the
device.) Second the process making the call must be the current owner
of the dev ice .

13

- - -~~~~~~~~~~ -

:~~~
—

~
-

~~~~~~ ~~~~--~
-

~~~~~~ ~~~~~~~ -~~~~
—

~~~~~~~ -- - •-— -
~~- -•••~~~~~~~

-- -—~~-~~~~~
_ - -~-~~~~~~ - 

Identify Ob lects and Assian Security ~~~~~

In our specification, objects, the repositories of information ,
are the V—function references.5 Since the •—property requires a secu-
rity level assignment to every object, we must therefore assign a se-
curity level for every V—function reference.

The security levels of V—functions visible to a kernel user are
fixed at the externally specified security level . For instance, con—

-~~ tents of a segment must be at the level given when the segment was
created . The security levels of internal (hidden) V—functions, how-
ever , are chosen by the validators (with the aid of the designers).
If we can find a security level assignment that enables us to prove
the ‘—property, we are done . If we can not , then we must ohange ei-
ther the security level assignments or the apecifioation , and make an—
other iteration through the proof.

The security level assignments used in this validation are given
in Appendix I. These assignments are kept in a security level data
base for use in later steps. The security levels of the V—functions
used in the Release_device example are provided in Table I.

V—function References Security Level Assianment

Cur_process PROC(Cur_proceaa)
Device(device_jd) .access level LOW
Deviee(deyjce_id).owner DEVICE(devioe_id)
Cur .access_level PROC(Cur_procesa)
Secure_read ( subjeot_level ,object_level)

LOW
exceptionj’eturn PROC( Cur_process)
ins truct ion_pointer PROC (Cur_prooess)

Table I. Security Level Assignment Table

These security levels were chosen as follows:

PROC(Cur_process) —— The level of the current process is used as
a reference point to indicate the security level of all
V—function references that are equal to the calling process.

5A V—function reference is a V—function plus an assignment of’ values
to all its parameters. In the example statements labeled B, C, an d E
are V—function references as well as the parameters Cur.access_level ,
Cur_process and Device(devioe~ id.itccess_level).

14

- —~•



-

~~~~~~~~~~~~~~~ 

— — - - -

~~~~~~~~~

-

LOW —— The security level of all devices is kept at the lowest
security level to facilitate reading the current security lev-
el of all devices.

DEVICE(device_id) -- The ownership of a device is obtained and
released at the security level of the device .

Identify the Subjects

In the simplest interpretation , all the accesses in a function
may be performed by one subject dedicated to that task. This assign-
ment of subjects will work for a function operating at only one level .
In a more complicated function , which performs actions at various se-
curity levels, the ‘—property will not be satisfied for this simple
subject assignment . For these functions, the accesses must be divided
up among various subjects, each of wh ich operates at a single secur ity
level ( 1 9].

The division is iccomplished by f irst  dividing up the function
into sections, each of’ which is given a label . (Note the labels A—E
in Figure 1.) The accesses in the function are then decomposed into
various cases. A 

~~~~ 
(see Table II) is composed of two parts — a

condition and an effect . For example, the case with condition part

~BCD and effect part B , means that if D is true and B and C are not ,
then the effect labelled E is considered . By proving the ‘—property
in each possible case we prove the ‘—property for the entire function
[17).

For most funct ions , we use a standard set of cases determined by
a standard set of labels (one for each exception , one for the effect
sect ion , one for the derivation section , and one for the exception
section). These standard labels are automatically provided and are
illustrated in Figure 1. Ex tra labelling , needed for more compl icated
functions, is provided by inserting label control characters into the
spec if icat ion. We must ensure when generat ing the list of cases for
an 0— function (especially one with a non—standard set of labels) that
all possible conditions are considered and that all effects implied by
a given condition are used .

As a result of our decision to use a standard set of cases when-
ever possible , we have had to make individual case divisions for only
a few 0—functions. Although more cases than were absolutely necessary
ha ve been used for some functions , we did not have to make case deci-
sions for the large majority of the 0—functions. Thus the overall
amount of work has been reduced .

15

_________ -4

-w--! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ---5’--— ~~~~~~~~~~~
-- _

~~~~~ ~~~~~~~“~~
5’5’

~~~ 
— “ “ _ -- - ‘S_’ ___ _____,_S._____,___ _ ____

Identify kccesses

In each case the accesses performed in a case are the V—functions
referenced in the sections making up the case. These accesses must be
divided up into read ’s and wr ite ’s. The following rules are used to
determine if a V—function is read or written :

1. V—functions that occur in exception or derivation sections
are read,

2. V—functions in the hypothesis of an if clause are read ,

3. V—functions on the right hand side of an assignment state-
ment6 are read ,

~~. A V—function, not a parameter of a V—function , on the left
hand side of an assignment is written , and

5. V—functions that are parameters to a V-function reference are
read .

In addition to V—function references, three other references are
made due to the semantics of’ the specification language. Each func-
tion of the specification may contain an exception, an effect , and/or
a der ivat ion sect ion , depending on the type of function . Each type of
section has its own semantics. These semantics must be reflected in
the proof in order that any interpretations made by the validators
correspond to any made by the designers of the specification and also
to any to be made by the implementers.

Our interpretation of the exception semantics is: if a function
is called , and one of its exceptions is true , then the caller of the
function is notified (by some unspecified method) that the exception
occurred . Conversely, if an exception does not occur , then the caller
is not notified . In either case the caller of the function can tell
whether or not any of the exceptions was true . Therefore, information
is always passed from the V—functions referenced in the exceptions to
the caller. We have represented this information flow by introducing
a new V—function , “exception_return ” , that is always written in the
exceptions section of a function. This V—function is represented by
the label assigned to “exception” in Figure 1.

6An assignment statement is an equality followed by a semicolon , e.g.,
A B ;, in the effect section , which is not in the hypothesis of any
if clause.

16

- 5

~~~~~~~~~~~~~ 
- - _ .  ~~~ - -



—‘ 
.
~~~~~~~~~~~~~ S 

~~
~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ‘ ‘~~~~ ~~~~~~ - --5---’ ---- --- - -— - - --5’— -

Each time a function is called information is read at the level
of the caller. We represent this information by including a second
V—function , “instruction_pointer”. Every effect in an 0—function is
contingent on a read of this function . This allows us to prove that
all writes in the 0—function are at a security level greater than or
equal to the level of the caller .

The value determined by the derivation section of V-functions or
OV— functions is returned to the caller of the function upon a success-
ful call. To account for this, we have included a third V—function ,
“value return”, that is written on every successful call.

Generate the Reference and Case Tables

The reference table (see Table II) identifies for each function
in the specification: the V—functions referenced ; the type of access
made to each of these V—functions; and in which label of the function
that access occurred . The generation of the reference tables has been
completely automated . All local and global macros are expanded so
that the reference tables contain a complete listing of the V-func-
tions referenced .

Once the security level table and reference tables are complete a
case table can be generated for each function. These case tables
(see Table III) list for each case the security levels of V—functions
tha t are read and the security levels of V—functions that are written .
The case tables list all of the information necessary to show the
‘—property related information flows. The generation of these tables
has been completely automate d .

Lemma Generation

Lemma generation involves writing down security level inequali-
ties that , if true , will prove that all writes in each case are great-
er than or equal to the security level of all the reads in the case.
If these inequalities can be shown to be true , then the ‘—property is
satisfied . The lemmas for the Release_device function are listed in
Table IV. These lemmas are written as two parts — the ‘~property m e —
quality and the conditions (taken from the condition column) under
which the inequality must be true.

Lemma generation has not been automated as yet. So far we have
automated only completely mechanical parts of the proof process and
not automated those parts closer to theorem proving or theorem check—
ing .

17



:~~~~~~~~~
—

~~~~~~~~~
- - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ 

-- — 
~~~~~~~~~~~~~~~~~~~~~~~

Function : Release_device
Reference Table

Written
Reference Read in in

Cur_process B , C
Device(device_id) .access_level B
Device(device_td).owner C E
Cur .access_level B
Seoure_read(Cur. access_level ,Device(device_id) .access_level)

B
exception_return A
instruction_pointer D

Table II. Reference Table for Release_device

Case Table for Release_device
Cond. Effect Read Levels Write Levels

B A LOW PROC(Cur_process)
PROC(Cur_process)

-

~~ ~BC A LOW PROC (Cur_process)
PROC(Cur_process)
DEVICE(devioe_id)

B~C A LOW PROC(Cur_process)
PROC(Cur_process)
DEVICE(device_id)

~BCD E LOW DEVICE(device_id)
PROC(Cur_proceas)
DEVICE (dev ice_id)

Table III. Case Table for Release_device

DEVICE(device_id) .~~ PHO C(Cur_prooess) B

DEVICE(device_id) = PROC(Cur_prooess) ~B~C

Table IV . Lemmas For Release_device

18

‘ ‘ - ‘- ‘-,. -——----- -----.-——-

t.

Prove the Lemmas

As automating the lemma proof would be complicated , the lemmas
are proven without machine aid . Thus, the method we have chosen to
prove the lemmas is tailored to a hand proof. Future work on theorem
provers and checkers should allow much of these proofs to be done by
machine . Even with theorem provers, however , the generation of the
relations will , most likely, be done by hand .

The first step in proving the lemmas is to minimize the lemmas
generated by all the functions into a small succinct set of invari-
ants, called the relations, that give facts about the specification .
Second , we list with each lemma the relations needed to prove it. Fi-
nally, the relations must be shown to be preserved by each 0—function .
This involves interpreting the effects section of each 0—function and
showing that: if no exceptions occur, and if the relat ions are true
when the 0— function is called , then the relations are true in the next
state. The relations and their proof’ are given in Appendix VI .

In the Release_device example the first lemma is true because of
the condition in label B of the specification. The second lemma is
true because of the condition in label C and because the Multics spec—
ification obeys a relation that states that if the owner of a device
is defined , then the security level of the device and its owner are - -

the same.

ACTIVITY , TRANQUILITY, AND ERASURE

Activity is a property that ensures that whenever a V—function is
read it has a well defined value . A V—function is considered active
if it is accessible for reading by any subject. To prove this proper-
ty , we must show that no subject reads an inactive V—function. This
is done by giving every V-function reference an activity assignment , a
map from a V—function reference to {“active” , “inactive”), and showing
that whenever a V—function is referenced it is in the act ive state.
Since most V—functions remain active , this proof is short . The proof
is appended to each reference table , when needed , under the head ing
“Act ive When Read Because”.

The mathematical model assumes a “tranquility principle” [6) that
the classification of active objects will not be changed . This pre-
vents inadvertent downgrading of an object by changing its security
assignment during a state change. The tranquility principle does not
apply for V—functions inactive either before or after an 0—function
call. The tranquility principle requires showing that whenever a
primitive V—function changes its security level during an 0— function
call , the V—function was either inactive before the 0—function call or

19

,_.— - —5’ ~~~
.. - — - - - — —‘ ~~~~~~~~~~~~~~~~~~~~~~~~~

--5-’—— -‘-- ,_-——- ‘;.-----—---_ _ _ 5______ __ _ ’ —‘—--.-_‘-----——-——- -—-— ---- -‘-5-.--—-- —----—--- — ‘-5- -
~~~ 

—

it is inactive upon completion of the call. This proof appears at the
bottom of the case tables when needed .

In principle , act iv ity and tran qu ility form a suff icient set of
rules . However , in the Multics specification some objects must be re-
used . Erasure is the property that ensures that all of the informa-
t ion in an object is destroyed before that object can be reused . The
erasure principle requires showing that whenever a primitive
V—function is activated in an 0—function , it must be totally rewritten
in that 0— function. The erasure proof is contained at the bottom of
the case tables when needed .

The act ivity ,  tranqu ility ,  and erasure proofs are done by hand .
Tools have been prov ided to han dle some of the bookkeeping ( e .g . ,
f ill ing in the act iv ity status in the correct place once it baa been
prov ided).  These tools have been kept to a minimum as the tranquili-
t y ,  activity , and erasure proofs are the smallest part of the overa ll
proof. 

-

TRUSTED SUBJECTS

The enforcemen t of the ‘—property prohibits a program operating
on behalf of a user from reducing the classification of any informa—
tion . Users, however , need not be constrained by the ‘—property. As
an example , certain users have the authority to alter the classifica-
tion of a document if the classification of the document is inappro-
priate to the classification of the information content . These users
are trusted not to misuse this authority.

In order to facilitate operations of this type , the kernel pro-
v ides a mechanism that interfaces the rules of the external environ-
ment to rules enforced on uncertified programs. This mechanism is re-
ferred to as the “Trusted Subjects” interface. Functions that reside
in this inte rface are exempt from certa in rules of the model. Only
users or certified software are allowed to invoke these functions.

In the Multics top level specification the System Security Offi-
cer ( SSO) is the only trusted subject.  The Mult ics spec if icat ion
gives the SS0 the capab il ity to , for example , reclassify segments and
update storage management (quota control). We must prove that users
of the SSO interface can not compromise information that they cannot
otherwise read . To do this we will show that the SSO obeys:

1. the simple security condition ;

2. a modified fo rm of the tranquility principle called the trust—
ed tranquility principle; and

20

- ‘ ~~~~~~~~~~ — - -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~



-
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _~~~~~~~~~~~ _

3 the activity and erasure princ iples.

In order to simplify the simple security condition proof we actu-
ally attempt to prove the ‘—property and then show that all the
‘—property violations are not violations of the simple security condi-
tion .

The trusted tranquility principle is defined to be: a trusted
subject can change the classification of an active V—function from ci
to c2 if the trusted subject has a security level greater than or
equal to both ci and c2. This definition allows the SSO to reclassify
V— functions that the SS0 has the authority to read.

The proof that the SSO obeys the simple security condition , the
trusted tranquility principle , and the activity and erasure principles
are given in Appendix VII . This appendix will also give a list of any
‘—property or tranquility violations that can be performed by the SSO,
so that he will know what information he is downgrading. We note here
also that the SS0 0—functions must be shown to preserve the relations.
The importance of this is discussed in the next section. The proof
that the SSO 0—functions preserve the relations is given in Appendix
VI.

21

— j— - -—5—— - - —--—- 5——-—- .- -5—— — ‘- — --.—--~—--—5’ ——— 5’-—- —— — —--——- —~~~~~~—- ~~~~~~~~~~~~~~~~~~ ~~~~



~~~~~~~~~~~~~~~~~~~
—- -

~~~~~~~~~
—— ‘- -- —---—

~~
- - - --- ---—---— -

. -—- —- ----— --. ------— ----------- .~~~~ ,

SECTION III

A COMPARISON OF THREE TOP LEVEL VALIDATION EFFORTS

To date , three separate top level validation exercises have been
completed : an in—house PDP— 11/1~5 kernel specification ; an early
version of the storage control subsection of the Multica specifica-
tion ;7 and the full Multics specification contained herein. We have
used the results of these exercises to evaluate the relative efforts
needed for validation and the effectiveness of top level validation .

CAVEATS

Before making this evaluation , a few caveats are in order . None
of the three validation exercises was done in a production environ-
ment . This factor contributes both positively and negatively to meas-
ured productivity and expended manpower. While the very best people
were often available to work on the project (people with high produc-
tivity), the research and development environment did not lend itself
to the rapid attainment of goals (e.g., it took a few years to develop
the kernel design and validation methodologies). Nevertheless , the
relative time spent in various portions of the validation exercises
does indicate a trend that is very interesting to observe. For if
these val idation techniques do prov ide the basis for a sound software
engineering discipline , then the trend is one that will eventually
predominate .

11/I~5 VALIDATION

The first validation exercise was done for an in—house l1/~35 ker-
nel (see Table V). The vast majority of’ the t ime spent on this vali-
dation was in developing the methodology . The most significant change
in the methodology occurred when the validators discovered that a top
level specification that only indicated user visible activity greatly
simplified the validation . Upon completion of the new top level spec-
ification , the actual validation took about a month.

The 11/~l5 kernel specification consists of 21 0—functions and 8
mapping V—funct ions .  Only the 0—functions required kernel proof. The
mapping V—functions were simple enough so that security levels could
be easily determined . Although small , the val idators concluded that

7This validation exercise was not published .

22

- -~~~~~~~~~~ - - - ~~~~~~~~~~~ 
— - - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~


I I I
I I I

Task Man/months I

Developing Methodology 12
I __

Rewriting Specifications I .5 I
I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I _ _ _ _ _ _ _ I
Actual Proof 1

I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I _ _ _ _ _ _ _ I
Documentat ion 6

I ______________________________ I ______________

Table V. 11/45 Top Level Validation

much of the validation process was mechanical and tedious, and that
both the morale and credibility of the provers could benefit from ma-
chine aid.

FIRST ATTEMPT AT MULTICS STORAGE CONTROL VERIFICATION

A top level specification for Multics was started at about the
same time that the 11/45 validation was being completed . The speoi—
fier s were able to use experience gained on the 11/45 work to con-
struct a specification that could be validated . To test out the by—
pothesla that specifiers could construc t this type of specification , a
student employee was given the task of validating the storage control
section of the specification (see Table VI).

Task Man/months
_____________________________ I _____________

Learning Methodology .75 I
I __

Developing Tables .5

Proofs Up to Proof .5
of Lemmas

Documentation I not
I completed

Table VI. Multi~s Storage Control Validation

23

-
~~

--~~~ - ‘-- ~~~~~~-

‘5-
~~‘

I

The storage control validation was useful in that it demonstrated
that our methodology was simple enough to instruct inexperienced indi-
viduals to perform the validation up to the proof’ of relations. Prov—
ing relations still needs a competent mathematician . As in the 11/45
val idat ion , a significant portion of the time was spent mechanically
building the necessary tables.

MULTICS TOP LEVEL VALIDATION

For the current Multics validation we used tools to aid the vali-
dation process (see Section II). At the onset of the validation , we
calculated that it would take two people about a month and a half to
complete the val ida t ion. We based th is calculat ion on the belief that
the specification was virtually correct. As it turned out , the speci-
fications contained a substantial number of errors. To document and
control the changes to the specification , we instituted a configura-
t ion management procedure and required that each change be accompan ied
by a change request.

During the validation process we received 58 change requests af-
fect ing 70 out of the 104 functions. These chaflges included the addi—
tion of 21 and the removal of 5 functions. In an effort to document
the types of changes made, we have divided the changes into four cate-
gories: syntax changes; changes to the functional behavior submitted
by the specifiers; changes to make the specification conform with the
validation methodology ; and design errors discovered by the validation
process. Table VII reports on the breakdown of these changes.

Sivntax Changes

The first category of changes was syntax changes. Fifteen change
requests were received of which 3 affected more than two functions . It
is interesting to note that over half of these changes were received
during the first week the tools were available. The others were scat-
tered around major changes added by the specifiers. The most impor-
tant errors found in this category were references to functions that
had been removed or had been renamed during the time that the specifi—
cation was being developed .

Functional Behavior Chances

Functional behavior changes refer to those changes submitted by
the specification writers that changed the behavior of the specifica-
tion . We received 9 change requests of this type : 7 of these affec—
ting more than two functions. Over half of the changes received were
as a direct result of the validation . We found that the validation
was very useful in po int ing out port ions of the specification whose

24

‘---~-- r ~~~ -—- -~---— ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~
~ 1~~

I Number of I Number of I Number o t I
I Change Requests 1 Requests that I Functions I

I I I Effeoted More I Changed I
I I Than 2 Functions I
I _______________________ I _ ___________________________________ _____________________ I
I Syntax I
I Changes I 15 3 15

_____________________ I ______________________________ ________________________________ _I
1 Functional I I
I Behavior 9 7 I 50
I Changes 1
I ______________________ I _ ________________________________ ____________________ I
I Changes For t 1
I Validation 1 11 3 I 21
I I I

__________________________ ____________________________________ ______________________________________ _______________________ I

1 Errors I I
I Found by 1 23 I 5 1 31
1 Validation 1 1
I _ _ _ _ _ _ _ I _ _ _ _ _ _ _ _ _ _ I _ _ _ _ _ _ _ _ _ _ I . 1

Table VII. Specification Changes

behavior did not conform to the behavior that the specifiers had in—
tended .

Chanies for Validation

The tool s we used to construc t the validation table required the
specification to be in a particular format. In addition , the valida.-
tion methodology used could be applied more readily if the specifica-
tion was written in a certain style. This category of changes repre-
sents those changes made to the specification to enable us to use our
methodology and our tools. In moat oases, these changes were minor .
Close communication between specifiers and validators oan minimize
this type of change.

Errors Found by Validation

The most important category of change requests were those that
involved actual errors found by the validation process. Included in
this category were all: ‘—property violations, simple security viola-
tions, relation violations, and errors that prohibit an implementation
of the specification from working. We have further broken down this
category of errora in Tab le VIII to tho.e changee that occurred in
the trusted (SS0) portions and those that occurred in the untrusted
portion of the specification .

25

~~~~---~~~- --- -—- - - - 
~~~—--- --___


- - — - - -

I Definitely I •— p roperty Simple I Violation I
Would be 1 Violations I Security I of I

I Found by I I Condition I Relations I
I Testing 1 I I

I I I I I I
I __________ I _____________ I _____________ I _____________ I ____________ I

l Trusted l I 1
I (SSO) 1 3 1 none 3 1 5

Secti o n l 1
I I I I I I
___________ ______________ ______________ ______________ I _____________ I

Non I I I 1
I Trusted 1 2 8 1 none 1 2 1
I Section 1 1 I *

I I I I I I —I _____________________ I ____________________________ I ___________ __ I ____________________________ I __________________________ I

Table VIII. Design Errors Found by Validation

I

The most significant errors were found in the SSO portion of the
~specification . As an example of the type of error found , one error
had the result of introducing a large bandwidth storage channel into
the specification [181. The channel occurred when the 550 removed
quota from an empty directory. Subsequent calls on the system from
untrusted processes could pass information by first creating a file in
the directory and then modulating the length of that file. The dis-
turbing characteristic of this path is that it was unnoticed until the
validation was performed . The path was found , because one of the SSO
functions violated a relation that was used to validate the rest of
the specification.

The security methodology being employed guarantees that once in a
secure state , the machine will stay in a secure state. However , by
violating a relation, the SSO subsection allowed the SSO to place the
system into an insecure state. The specification documentation did
not indicate that such an action was possible.

An argument was made that this evaluation was unfair , because the
path involved an action of the SSO, a trusted individual . However ,
even though the SSO is trusted , he can make mistakes (especially when
the global affects of a function are unknown). We believe that the
SSO must. be made constantly aware of the global affects to his activi-
ty. The only known method to ascertain the global affects of a func-
tion is to validate it. The above situation , in which a function had
a side effect of causing the system to enter an insecure state , is an
example of a function that had unknown global effects. The validation
of the SSO subsection precludes this possibility.

26

1
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Cost of~ th~ ~.—‘~.-iidation

The Multics top level validation took 14.5 man months of effort
to complete (see Table IX). The actual proof, however , took only
about two months , approximately the same time it took to prove the
11/45 top level specification. This figure is especially interesting
in that the Multics top level specification had 47 0— and OV—functions
compared to the 21 0—functions of the 11/45 validation. In addition ,
the number of V—functions increased from 8 to 57.

I I I
I I I

I Task I Man/months I
I I
______________________________ I ______________

I Tool Development 1 2
I I
I _____________________________________________________________ I ____________________________ I

I Refining Methodology I 2
I _____________________________________________________________ I ____________________________ I
I Correcting SpecificationsI 2.5 1
I I I
I _____________________________ I _____________ I

I Final Proof 1 2 I
I I —

I ______________________________ I ______________ I

I Documentation I 6
I I I
I ______________________________ I ______________ I

Table IX . Multics Top Level Specification Validation

The primary reason that the Multics specification could be vali-
dated in such a short time was the use of the tools. Following each
set of change requests, the tools were employed to regenerate the val-
idation table. The use of more sophisticated tools should decrease
the val idation time even further.

27

____________________________________________________________________________________________________



-

SECTION IV

REMAINING PROBLEMS

Several problems remain in the validatLn process. These are the
implementation V—functions, the clock , process schedul ing, discretion—
ary access control , and the possibility that the proof may contain er—
rors .

THE IMPLEMENTATION V-FUNCTION-MACROS

In the specification there are several V— function-macros
(Ac le_offset , Branch_offset , Dir_page_ex ists , an d Message_offse ts)
called the implementat ion V— funct io n—macros , for which no derivat ion
is given . The derivation can be determined only when a specific im-
plementat ion is chosen . Instea d of giv ing a derivat ion , the designers
have given a list (in the value section of each of the implementation
V—function —mac ros) of V—func tions from which the implementation V-
function—macros can be derived . It is the task of the ind ividuals
performing the verification of the implementation to prove that each
of the implementation V—function—macros can actually be derived from
the V—functions listed in its value section .

That a specific derivation is not given is no problem from a top
level validation point of view . In the validation , for V—function—
macros that do not appear in any relat ions , we need to know only what
V—functions are read in determining the value of the mapping
V—function .

The problem with the implementation V-function—macros is that
the corresponding values are in fact not derivable from the V—func—
tions referenced in their value section . In Multics , the implementa-
tion V—function—macros indexed by segment are a complex function of
the sequence of actions done to the segment. Since the sequence of
actions done to a segment is at the level of the segment , the level we
have assigned to these implementation V—function—macros , we do not
foresee a security problem . Extra V—functions could , in principle , be
added in the top level to record the history, in order that the imple-
mentation V—functions be derivable from primitive V-functions.

Adding an extra history V—function should affect a top level
proof very little; the level of the implementation V-function—macros
would still be at the level of the segment, and every 0—function that
modified the segment would also modify the history function . This ex-
tra write reference would not cause the ‘property to be violated ,

28

5’ -——5’- — — —-



because we already have , in the 0— function , a write at the level of
the segment .

THE CLOCK

Between 0—function calls in the top level , the clock ( the
V—function Current_calendar_time ) is incremented . A security viola-
tion can be found in this arrangement if, for example , we had as an
effect in the 0— function the incrementing of the clock. Every process
would both read and write the clock; this is a clear ‘—property viola-
tion.

In general , time or covert [19] channels are a well known way to
violate the ‘—property. We know of no practical methods to eliminate
the time channel totally. 118]

We have also had to assume in our proof (See relation R20 in Ap-
pendix VI.) that the clock is actually incremented between 0— function
calls. An implementation must make sure that both the granularity of
the clock is fine enough and the number of the bits in the clock word
large enough so that the clock is a different value before the next
0—function call. This can be easily accomplished with available tech—
nology.

PROCESS SCHEDULING

The process scheduling algorithm was felt to be too
implementation—dependent to be put in the specification , but it can be
shown that a malicious scheduler can compromise information . Even an
innocent scheduler can pose a security risk by basing its decisions on
execution characteristics under the control of a user process, such
as CPU /b ratio. Some sort of restrictions on the scheduler are need—
ed.

DISCRETIONARY ACCESS CONTROL

Discretionary access control (need—to—know) is not proven here.
At most we could have made static assertions such as: If a user does
not have read access to a segment then in the next 0—function call he
can not read the segment ; and a user cannot obtain read access without
having the necessary permission . Such static assertions could be
proven rather easily because the function “Ina&’ is always called be—
fore any accesses are allowed .

29

— S 5_S.- 
~~~~~a

-r - - ~ +~~~~~~ r:- L.. : -
- IA


~~~ “~~~~~~~
r.- -  ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~•~~•_ ~~~~ 5’-_-.~~S•~ SS5’—-.- *~-

On the other hand , no meaningful dynamic assertions (e.g., can a
user anytime in the future access a segment) could be made for the
Multics specifications. The 0— functions Set_principal_ident ifier and
Create_proc effectively allow a user to become anybody and thus able
to access that person’s files. Also , a trojan horse could give an Un—
authorized user access to a f i le by calling Add_ACL_Elemen t , or by
copying the file to a file that the unauthorized user could access.

• Dynamic assertions can be made only in the context of a supervisor —

program that restricts calling of the above three 0-functions and in
restrictive domains [20].

In view of the lack of meaningful dynamic assertions and because
prev ious work has not dealt adequately with even the static proper-
t ies , we have avoided discretionary access control altogether . To
tackle the discretionary access control problem , t he problem of good
static assertions must be solved first. This must be followed by some
meaningful dynamic assertions such as a detailed description of how a
user might get access to a file. We leave discretionary access con—
trol to further investigation .

PROOF ERRORS

Errors must be expected to occur in the validation itself. The
S best defense against them is to make the validation procedure as

standard as possible, and to use software tools to carry out the me—
chanical parts of it. The weaknesses of the validation then fall into
four main categories:

- adequacy of the methodology

- correctness of the software tools

- use of the tools

— proofs of lemmas, relations, etc.

Justifying the methodology and validating the software tools are
both nontrivial endeavors, but they need only be done once.

Proofs of lemmas , preservation of relations, and other results
that apply to individual functions yield many opportunities for mis—
takes, but proofs seem to be self—monitoring in the following sense:
easy proofs are not a problem , and hard proofs call attention to them—
selves by reason of their difficulty, so that many mistakes are caught
during the proof process.

30

L —- • - 
- tt~~ -~~. .



Software tools can be used incorrectly, especially if there are
many steps involved in applying them . A number of errors in the vali-
dation were discovered which were the result of failing to use an
abbreviation—related tool properly. Because of the independence of
the tools from the specification itself, however, these errors were
errors only in the proof — the functions involved were actually cor-
rect .

The use of abbreviations is generally a delicate matter that must
be handled carefully, especially if the semantics of abbreviation ex-
pansion involves nesting or is otherwise complicated .

I

.

31

- - - — S - - S S ~~~~~~~~ - - -S 
- A



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION V

CONCLUSION

In this two volume report we have presented a mathematical vali-
dation that proves that the Multics Top—Level Specification adheres to
the rules of a mathematical model for security . Validation has been
shown to be a relatively inexpensive form of finding errors in, and *

demonstrating the correctness of, a design. The expenditure of funds
in the design phase to correct design problems should sign if icantly
reduce the more costly problems found in the implementation or testing
phases. We believe that the concept of’ defining a policy of correct—
ness , followed by a validation that the design meets that policy, is
useful in wider applications.

Software tools were used for both initial table generation , and
subsequent table generation as the 58 change requests were made .
Without these tools, the validation process would have been much more
costly.

It is our recommendation that future validations begin earlier in
the specification phase. The vast majority of these changes could
have been made by the specifiers had the tools been made available as
the specification was written.

32

___________________________ -
~~

- --- 5
- -,—-- --,- S- -_-..——-__

-

RE FEREN CES

1. W.L. Schiller, P.T. Withington , and J.P.L. Woodward “The
Design and Abstract Specification of a Multics Security Kernel ,”

• ESD—TR—77—259 , Volumes I — III-, Electronic Systems Division , AFSC,
Hanscom AF Base, Massachusetts, November 1977 — March 1978
(ADA048576 , ADA053148 , ADAO53 149) .

2. Department of Defense, “Security Requirements for iutomatic Data
Processing (ADP) Systems ,” Department of Defense Manual 5200.28,
December 1972.

3. J.P. Anderson, “Computer Security Technology Planning Study ,”
ESD—TR—73-51, Volume I and II, James P. Anderson & Co., Fort
Washington , Pennsylvania, October 1972.

4. R.M. Graham, “Protection in an Information Processing Utility,”
Communications of the ACM, Volume 11, Number 5 , May 1968 , pp.
365—369.

5. D.E. Bell and E.L. Burke , “A Software Validation Technique for
Certification , Part 1: The Methodology ,” ESD—TR—75 .-54 ,
Volume I, Electronic Systems Division , AFSC, Hanscom AF Base, Mass.,
April 1975 (AD009849).

6. D.E. Bell and L.J. LaPadula,,”Secure Computer Systems,”
ESD—TR—73—278, Volume I—Ill , Electronic Systems Division, AFSC ,
Hanscom AF Base , Massachusetts , November 1973 — April 1974
(AD770768 , AD77 1543 , AD780528). J

7. K.G. Walter , W.F. Ogden , W.C. Rounds,F.T. Bradshaw, S.R. Ames, Jr.,
and D.C. Shumway, “Primitive Models for Computer Security ,”
ESD—TR—74— 117, Case Western Reserve University, Cleveland , Ohio ,

• January 1974 .

8. D.L. Parnas, “A Technique for Software Module Specification
with Examples ,” Communications of the ACM , Volume 15 , Number 5 ,
May 1972 , pp. 330—336 .

9. E .I . Organick , The Mult ics System: An Examination or I ts
Structure, MIT Press , Cambridge , Massachusetts , 1972.

10. W.R. Price , “Implicat ions of a Virtual Memory Mechanism for Im-
plementing Protection in a Family of Operating Systems ,” Ph.D.
Thesis, Carnegie—Mellon University, Pittsburgh , Pennsylvania ,
June 1973.

33

L ---

-

- ~~s~~r - ~~~~~~~~s _;~~

11. J.M. Spitzen , K.N. Levitt , and L. Robinson , An Example ~LHierarchical Design
~ 4 Proof, Technical Report 2, Stanford Re-

search Institute , Menlo Park , California, March , 1976.

12. R. Mim er, “An Algebraic Definition of Simulation between Pro—
grams,” Proc. 2nd lnt. Joint Conf. on Artificial Intelligence,
London, 1971, pp. 481—489.

13. C.A.R. Hoare , “Proof of Correctness of Data Representations ,”
Acta Inforinatica, 1,44(1972), pp. 271—281.

14. R.W. Floyd, “Assigning Meaning to Programs,” Mathematical As—
pects of Computer Science, Volume 19, American Mathematics Sod —
ety , Providence , Rhode Island , 1967, pp. 19—32.

15. J.K. Millen, “Security Kernel Validation in Practice ,” Comtnuni—
catioi~.s of the ACM, Volume 19 , Number 5, May 1976, pp. 243—250.

16. 0. Roubine, and L. Robinson “SPECIAL (SPECIfication and Asser—
tion Language) : Reference Manual ,” SRI Technical Report CSG— 45 ,
Stanford Research Institute, Menlo Park , California, August
1976 .

17. S.R. Ames, “File Attributes and their Relationship to Computer
Security ,” ESD—TR—74—l91, Masters’ Thesis Case Western Reserve
University, June 1974 (AD A002159).

18. S.B. Lipner , “Comment on the Confinement Problem ,” ACM Operat—

~aa Systems Review, Volume 9 , Number 5, May 1975 , pp. 192—196 .

19. B .W. Lampson , “A Note on the Confinement Problem ,” Communica—
tions ~~~~~~~~~~~~~~~~~~~~~ Volume 16 , Number 10 , October 1973 , pp.
613—615 .

20. M.A. Harrison , W.L. Ruzzo, and J.D. Ul lman , “On Protection in
Operating Systems ,” ACM SIGOPS Operating Systems Review Volume
9, Number 5, Proceedings of the Fifth Symposium on Operating
Systems Principles, pp. 14—25.

34

—--
- —--S - -

